Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
In order to enable the simultaneous transmission and reception of wireless signals on the same frequency, a fullduplex (FD) radio must be capable of suppressing the powerful self-interference (SI) signal emitted from the transmitter and picked up by the receiver. Critically, a major bottleneck in wideband FD deployments is the need for adaptive SI cancellation (SIC) that would allow the FD wireless system to achieve strong cancellation across different settings with distinct electromagnetic environments. In this work, we evaluate the performance of an adaptive wideband FD radio in three different locations and demonstrate that it achieves strong SIC in every location across different bandwidths.more » « less
-
| The relentless demand for data in our society has driven the continuous evolution of wireless technologies to enhance network capacity. While current deployments of 5G have made strides in this direction using massive multiple-input–multiple-output (MIMO) and millimeter-wave (mmWave) bands, all existing wireless systems operate in a half-duplex (HD) mode. Full-duplex (FD) wireless communication, on the other hand, enables simultaneous transmission and reception (STAR) of signals at the same frequency, offering advantages such as enhanced spectrum efficiency, improved data rates, and reduced latency. This article presents a comprehensive review of FD wireless systems, with a focus on hardware design, implementation, cross-layered considerations, and applications. The major bottleneck in achieving FD communication is the presence of self-interference (SI) signals from the transmitter (TX) to the receiver, and achieving SI cancellation (SIC) with real-time adaption is critical for FD deployment. The review starts by establishing a system-level understanding of FD wireless systems, followed by a review of the architectures of antenna interfaces and integrated RF and baseband (BB) SI cancellers, which show promise in enabling low-cost, small-form-factor, portable FD systems. We then discuss digital cancellation techniques, including digital signal processing (DSP)- and learning-based algorithms. The challenges presented by FD phased-array and MIMO systems are discussed, followed by system-level aspects, including optimization algorithms, opportunities in the higher layers of the networking protocol stack, and testbed integration. Finally, the relevance of FD systems in applications such as next-generation (xGmore » « less
-
We present a set of experiments utilizing wideband real-time adaptive full-duplex (FD) radios, demonstrating simultaneous transmission and reception on the same frequency channel. Each FD radio consists of a circulator-based antenna interface, a switched-capacitor delay-line-based configurable Radio-Frequency Integrated Circuit (RFIC) that implements Self-Interference Cancellation (SIC), an FPGA that optimizes the RFIC configuration in under 1.1 sec and can adapt to environmental changes in under 0.3 sec, and a Software-Defined Radio (SDR) transmitting OFDM-like packets. We demonstrate a real-time adaptive FD radio that achieves the SIC necessary to reach the noise floor across a wide bandwidth of 50 MHz. Then, we use two FD radios to create a wireless link and showcase the superior FD throughput.more » « less
-
Outdoor-to-indoor signal propagation poses significant challenges to millimeter-wave link budgets. To gain insight into outdoor-to-indoor millimeter-wave at 28GHz, we conducted an extensive measurement campaign consisting of over 2,200 link measurements in West Harlem, New York City, covering seven highly diverse buildings. A path loss model constructed over all measured links shows an average of 30dB excess loss over free space at distances beyond 50m. We find the type of glass to be the dominant factor in outdoor-to-indoor loss, with 20dB observed difference between grouped scenarios with low- and high-loss glass. Other factors such as the presence of scaffolding, tree foliage, or elevated subway tracks, as well as difference in floor height are also found to have a 5–10dB impact. We show that for urban buildings with high-loss glass, outdoor-toindoor downlink capacity up to 400Mb/s is supported for 90% of indoor customer premises equipment by a base station up to 40m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, downlink capacity over 2.8/1.4Gb/s is possible from a base station 57/133m away within line-of-sight. We expect these results to help inform the planning of millimeter-wave networks targeting outdoor-toindoor deployments in dense urban environments, as well as provide insight into the development of scheduling and beam management algorithms. Index Terms—Millimeter-wave wireless, 28 GHz measurements, path loss models, wireless network planning, 5G-andbeyond networks.more » « less
-
Outdoor-to-indoor (OtI) signal propagation further challenges link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWaveat28GHz, we conducted an extensive measurement campaign consisting of over 2,000 link measurements in West Harlem, NewYorkCity, covering seven highly diverse buildings. A path loss model constructed over all links shows an average of 30dB excess loss over free space at distances beyond 50m. We find the type of glass to be the dominant factor in OtI loss, with 20dB observed difference between clustered scenarios with low- and high-loss glass. Other factors, such as difference in floor height, are found to have an impact between 5ś10dB. We show that for urban buildings with high-loss glass, OtI data rates up to 400Mb/s are supported for 90% of indoor users by a base station (BS) up to 49m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.8/1.4Gb/s are possible from a BS 68/175m away when a line-of-sight path is available. We expect these results to be useful for the deployment of OtI mmWave networks in dense urban environments and the development of scheduling and beam management algorithms.more » « less
-
null (Ed.)ABSTRACT In order to support experimentation with full-duplex (FD) wireless, we recently integrated two generations of FD radios in the open-access ORBIT and COSMOS testbeds. First, we integrated a customized 1st generation (Gen-1) narrowband FD radio in the indoor ORBIT testbed. Then, we integrated two 2 nd generation (Gen-2) wideband FD radios in the city-scale PAWR COSMOS testbed. Each integrated FD radio consists of an antenna, a customized RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a remotely accessible compute node. The Gen-1/Gen-2 RF SI canceller box includes an RF canceller printed circuit board (PCB) which emulates a customized integrated circuit (IC) RF canceller implementation. The amplitude- and phase-based Gen-1 narrowband RF canceller achieves 40 dB RF SIC across 5 MHz. The Gen-2 wideband canceller is based on the technique of frequency-domain equalization (FDE) and achieves 50 dB RF SI cancellation (SIC) across 20 MHz. In this paper, we present the design and testbed integration of the two generations of FD radios. We then present example experiments that can be remotely run and modified by experimenters. Finally, we discuss future improvements and potential FD wireless experiments that can be supported by these open-access FD radios integrated in the COSMOS testbed.more » « less
An official website of the United States government

Full Text Available